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Abstract

This study focuses on developing reduced-order models for unsteady aerodynamic flows past a cascade of two-

dimensional airfoils. A reduction method known as System Equivalent Reduction Expansion Process (SEREP) is used.

The computational efficiency of the SEREP reduced-order model is compared with a reduced-order model formed

using the Proper Orthogonal Decomposition (POD) technique. The present study shows that the SEREP is

computationally more efficient than POD.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

High fidelity aerodynamic models usually involve large number of system degrees of freedom. Large order unsteady

aerodynamic models are not suited for stability analysis or control design of aeroservoelastic systems. Therefore, it is

desirable to reduce the model order with fewer states but which can still represent the system aerodynamics reasonably

accurately.

A commonly used reduction technique is based on projecting the reference aerodynamic model onto a reduced-order

subspace or basis. These basis vectors are chosen carefully so that the system dynamics is accurately captured by a

minimum number of states. One way to construct the basis vectors is to use the system eigenvectors obtained from

linearized system matrices. Eigenmodes are well known for their use of representing system responses over a given

frequency range, and have been widely used in structural dynamic problems (Maia and Silva, 1997). Modal analysis

techniques have been used in fluid flow problems too, though it is relatively recent (Dowell et al., 1997). Hall et al.

(1995) have computed the natural frequencies and mode shapes of unsteady compressible flows through airfoil cascades

and used the eigenmodes to form a reduced-order model. Hall (1994) used the natural modes of incompressible

unsteady flows past two dimensional airfoil and airfoil cascades, and three-dimensional wings, to construct reduced-

order models. An alternate approach to the eigenmode based reduction is the proper orthogonal decomposition (POD)

or Karhunen–Lo"eve method for extracting modal information based on simulations of the system (Berkooz et al., 1993)

at different time or frequency instances. Newman (1996a, b) has discussed the theoretical background and application

of this reduction technique. Romanowski (1996) used POD to reduce the model order of a 2-D compressible Euler

solution of flow past an oscillating airfoil. Kim (1998) has applied this technique in the frequency domain for 3-D vortex

lattice model of unsteady incompressible potential flow past a wing. More recently Epureanu et al. (2000, 2001) have

applied this technique to viscous-inviscid flow simulations past airfoil cascades. Willcox (2000) has used this technique

together with eigenmode based reduction as well as Arnoldi vector based reduction of unsteady aerodynamic model of

inviscid compressible flow past airfoil cascades.
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Proper orthogonal decomposition has its advantages in that it can be used for model order reduction of linear as well

as nonlinear systems. However, eigenmodes based reduction schemes have certain advantages in that choice of modes

and degrees of freedom to be retained is easily decided by the frequency range of interest and the spatial participation in

the selected modes in the frequency range. Also, they are relatively inexpensive in terms of computer effort in

comparison to POD reduction technique (Parte, 2002).

In the present study we implement an eigenmode based reduction model known as System Equivalent Reduction

Expansion Process (SEREP). SEREP has been used in structural dynamics for linear as well as nonlinear systems with

localized nonlinearities (O’Callahan et al., 1989; Avitabile et al., 1989). The eigenmodes are chosen depending on the

desired frequency spectrum over which the airfoil cascade oscillate. The degrees of freedom are retained depending on

their significant participation in the chosen modes. This reduction method is illustrated on numerical lumped vortex

panel implementation of a two-dimensional incompressible, potential flow past a cascade of NACA 0012 airfoils. We

have also compared this technique with POD based reduction in terms of computational cost.

2. Equations of motion

The two-dimensional vortex lattice model for airfoil cascades is discussed in this section (Katz and Plotkin, 2001).

The airfoils and their wakes are represented by a number of vortices. All the wake vortices are equidistant from each

other in the stream-wise direction. The airfoil is divided into a number of panel elements and discrete point vortices are

placed at the control points, located at one-fourth distance of each panel. The collocation points are assumed to be at

the three-fourth distance of each panel. The downwash velocity induced by the body and wake vortices of the airfoils in

the cascade are calculated by Whitehead’s method (Whitehead, 1960). It assumes that the downwash at the collocation

points of an airfoil is shifted in phase by a constant interblade phase angle s from the downwash of the airfoil

immediately next to it in the cascade. Thus, the vortex strength on the body and the wake for all the airfoils are identical

but shifted by a phase angle ms; where m is the blade number with respect to a reference blade. The downwash at a

collocation point on the reference blade is a summation of all the vortices on the reference blade body and wake and

also their phase shifted counterparts on other blades. The downwash is given by

ðwiÞk ¼
XN

j¼1

KijðgjÞk; i ¼ 1;y;M; ð1Þ

where Kij is called the kernel function of the downwash of cascade, ðgjÞk is the strength of the jth body vortex at kth

instant of time, and ðwiÞk is the downwash at the ith collocation point at kth instant of time. M is the number of the

body vortex points and N is the total number of the body and wake vortex points. The kernel function Kij is given by

(Whitehead, 1960)

Kij ¼ W ðxi � xiÞ � W ð�NÞ; ð2Þ

W ðzÞ ¼
1

4s

exp½�ðp� sÞexpðiyÞz=s þ iy�
sinh½p expðiyÞz=s�

þ
exp½ðp� sÞexpð�iyÞz=s � iy�

sinh½p expð�iyÞz=s�

� �
; ð3Þ

where y is the stagger angle, s is the interblade gap, and s ð0psp2pÞ the interblade phase angle.

The wake vortices are carried away by the free stream velocity and the distance between one wake vortex to the other

in the stream-wise direction is given by Dx ¼ VNDt; where Dt is the time step and VN is the free stream velocity. The first

wake vortex or the shed vortex has the strength of the time rate of change of the circulation about the airfoil. That is,

ðGMþ1Þkþ1 ¼ �
XM

j¼1

½ðgjÞkþ1 � ðgjÞk�: ð4Þ
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Nomenclature

c chord length of the airfoil

k reduced frequency, oc=VN

VN free-stream velocity

G vorticity strength of body and wake vortices

o frequency of oscillation, ImðlÞ
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The shed vorticity is convected into the wake by the speed of the free-stream velocity. The vorticity convection in the

wake is expressed by

ðGiÞkþ1 ¼ ðGi�1Þk; i ¼ M þ 2;y;N � 1: ð5Þ

In order to form the governing equations, the downwash induced at the collocation points due to wake and body

vortices are calculated. The boundary condition on the airfoil surface is the no normal flow condition at the body

collocation points. Total normal flow due to vorticity downwash and due to free-stream and airfoil motion are added

and equated to zero. This gives M boundary conditions. They are combined with the wake vortex convection equations

to form the governing equations. The governing equations are given in the form of a time difference equation,

ACkþ1 þ BCk ¼ vkþ1; ð6Þ

where A and B are N � N matrices, G is the unknown vorticity vector containing the body and wake vortices, vkþ1 is the

vector of normal velocities due to free-stream and airfoil motion at the ðk þ 1Þth time instant. The generalized

eigenvalue problem is solved by setting the right-hand side equal to zero. The associated eigenvalue problem is then

ðzA þ BÞX ¼ 0; ð7Þ

where z ¼ expðlDtÞ are the discrete time eigenvalues, and X is the eigenvector.

3. Reduced-order model using SEREP

We briefly review SEREP. A few of the eigenmodes and degrees of freedom from the original model are retained.

Only those eigenmodes and degrees of freedom whose contribution in the system dynamics is significant, need to be

retained. The natural frequencies and mode shapes of the reduced model will be exactly the same as that of the retained

modes from the original model. Further, the eigenvalues of the SEREP reduced-order model is independent of the

choice of retained degrees of freedom. However, the choice of degrees of freedom is important from the point of view of

forced response analysis using the reduced-order model in that the spatio-temporal characteristics of the forcing may

selectively excite different modes at different degrees of freedom.

Consider a general dynamical system in the state space form:

’x ¼ Fx; ð8Þ

where x is the state vector with n unknowns. The modal expansion of x is given by

xn ¼ Unnpn; ð9Þ

where Unn is the modal matrix of order n � n and pn is the vector of modal coordinates. Retaining the important modes

for system dynamics, say m modes, we get

xn ¼ Unmpm: ð10Þ

Now, to form a reduced-order model with a number of system unknowns, the number of degrees of freedom to be

chosen is a and these are called active degrees of freedom. Let the number of deleted degrees of freedom be denoted by

d: Then,

xn ¼ ½xT
a xT

d �
T ¼ ½UT

am UT
dm�

Tpm; ð11Þ

where ð	ÞT refers to transpose of a matrix.

Therefore,

pm ¼ Ug
amxa; ð12Þ

where the superscript g refers to a generalized inverse or pseudo-inverse as matrix Uam may not be square in

general. There are two possible cases. For the case when a > m; the generalized inverse is of rank m and is given by

Ug
am ¼ ðUT

a UaÞ
�1UT

a : However, for the case when aom; that is the number of equations are less than the number of

unknowns, the generalized inverse is of rank a; and is given by Ug
am ¼ UT

a ðUaUT
a Þ

�1: This produces only an average

solution for the m modal displacements and can lead to incorrect solutions (O’Callahan et al., 1989). However, this

situation is very unlikely to occur in the use of SEREP since usually the number of retained degrees of freedom a is

usually much larger than the number of retained modes m: Now returning to the development of the SEREP

methodology, we substitute Eq. (12) into Eq. (10) and obtain

xn ¼ UnmUg
amxa ¼ Txa: ð13Þ
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T is the transformation matrix relating the original state vector xn to the reduced-order state vector xa: Substituting this
transformation in Eq. (8), one gets

’xa ¼ T�1FTxa: ð14Þ

The eigenvalues of this reduced-order system of unknowns of order a is exactly the same to those m retained modes of

the original n order system. Further, unlike other reduction techniques, SEREP is a reversible process. That is, one can

compute the original system matrices from the reduced order ones using the transformation matrix T defined by

Eq. (13).

4. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a popular approach for determining reduced-order models of dynamical

systems. Typically, a time simulation of the system is performed and instantaneous solutions or ‘snapshots’ are obtained

at selected times. A two-point time correlation matrix is constructed from these data. The eigenvectors of this

correlation matrix then form the orthogonal set of basis vectors which will represent the solution in an optimal way

(Berkooz et al., 1993; Dowell and Hall, 2001).

Let the instantaneous flow field at the ith time instant be defined as vðiÞðxÞ ¼ vðx; tiÞ: Then the two-point correlation

function Cij be defined as

Cij ¼
Z

R

vðiÞðxÞvðjÞðxÞ dx; i; j ¼ time or frequency points; ð15Þ

where R is the spatial domain. The eigenvectors AðnÞ and the corresponding eigenvalues ln of C satisfy

CAðnÞ ¼ lnAðnÞ: ð16Þ

The empirically determined eigenfunctions are then computed as linear combinations of the data snapshots, using

fnðxÞ ¼
XM

k¼1

A
ðnÞ
k vðkÞðxÞ; n ¼ 1; 2;y;M: ð17Þ

Then, the system response can be represented in terms of these eigenfunctions as

vðx; tÞ ¼
XM

n¼1

anðtÞfnðxÞ; ð18Þ

where anðtÞ are time-dependent coefficients. The Karhunen–Lo"eve expansion theorem (Berkooz et al., 1993, p. 545)

states that the decomposition Eq. (18) is optimal for any square-integrable signal. Besides, the time functions anðtÞ are
uncorrelated too. The representation of the system response in terms of the K–L modes, Eq. (18), is essentially the

projection of the system response to a reduced-order solution space. Applying this transformation on the full order

system equations, we get a set of equations of motion for the reduced-order system. As shown by Kim (1998), POD can

be implemented in the time or the frequency domain.

5. Results and discussion

The airfoils in the cascade are NACA 0012 sections. As described in Section 2, a discrete vortex panel was used to

model flow past the airfoil cascades (Katz and Plotkin, 2001). The airfoils are assumed to be undergoing pitching

motion. The cascade parameters are: stagger angle y ¼ 45
; inter-blade spacing to airfoil chord ratio s=c ¼ 1; inter-
blade phase angle s ¼ 72
: The flow past the airfoil is modeled using 20 vortex elements. The wake is discretized with

200 free vortex elements modeled upto 200 time steps. These wake points stretched up to a length of 10 chords behind

the airfoil.

The generalized eigenvalue problem, Eq. (7), is solved for the eigenvalues and eigenvectors. The matrices ½A� and ½B�
in Eq. (7) are in general large, sparse and unsymmetric. Matrix ½A� is in general complex. The eigenvalues in the z- and

l-plane are shown in Fig. 1. The imaginary part of l corresponds to the reduced frequency k: We first consider the

SEREP technique for model order reduction by retaining different set of modes and degrees of freedom. We consider

the unsteady flow past the pitching airfoil cascade at k ¼ 1:0: The first 40 eigenmodes were retained. As shown in

Fig. 1, this frequency of oscillation lies well within these retained modes. The results of these simulations are shown

in Fig. 2. The number of retained degrees of freedom is kept fixed at 40; Uam is therefore square so that it can be
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inverted in the usual way. However, we varied the location of the degrees of freedom keeping the total number fixed at

40. In Fig. 2 it is seen that retaining all the airfoil surface vortex points is necessary for the reduced-order model to

follow the system dynamics closely. Since the flow over the airfoil was modeled with 20 discrete vortices, all 20 airfoil

vortices were retained. A minimum of 20 wake vortices were needed to complete an accurate reduced-order model. We
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Fig. 1. Eigenvalues in z- and l-plane.
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Fig. 2. Comparison of the lift coefficient values predicted by different SEREP models; pitching airfoil cascade at k ¼ 1:0:
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experimented with lower number of modes than 40, but the resulting reduced-order models were not able to follow the

system dynamics accurately.

Although the aforedescribed reduced-order model reproduced the system response accurately at k ¼ 1:0; an obvious

question to ask is whether this reduced-order model will accurately capture the system response for other frequencies of

excitation of the pitching airfoils in the cascade. We simulated this reduced-order model airfoil oscillation frequencies

beyond k ¼ 1; and it was able to follow the dynamics of the full order model till k ¼ 1:6: For frequencies outside this

range, obviously a different set of modes need to be chosen.

We were also interested in evaluating the reduced-order model response to a more generalized motion of the pitching

airfoils. So, we consider step-input type excitation. The reduced-order model discussed above, with 40 modes and

degrees of freedom, did not accurately capture the response. After few simulations, a reduced-order model with the first

50 eigenmodes was found adequate. As before, 50 degrees of freedom were retained, with 20 of them over the airfoil

surface and 30 in the wake. This reduced-order model accurately followed the system response to the step input. This is

shown in Fig. 3. Furthermore, this reduced-order model reproduces the system response well when the airfoil cascade

was pitching harmonically in a reduced frequency range k ¼ 0:1–3.0, as shown in Fig. 4. This figure shows the

maximum lift coefficient at different reduced frequency values in the range of k ¼ 0:1–4.0 and a good match is observed

between the 50 mode reduced model and full order model upto k ¼ 3:0:
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We now discuss the results obtained using a reduced-order model based on the proper orthogonal decomposition

(POD) technique. A frequency domain implementation of the POD method was used. The original system was

simulated in the frequency domain at different frequency values. To do so, a z-transform of the governing discrete time

equation, Eq. (6), was performed, and the solution was computed in the frequency domain at different frequencies

from the chosen window. In the first instance, the simulation frequencies for the model was in the frequency interval

k ¼ 0:1–6.0 in steps of Dk ¼ 0:1: This frequency window covered the oscillation frequency ðk ¼ 1:0Þ of the full-order

model of the airfoil cascade. Solving the eigenvalue problem associated with the two-point correlation matrix C in

Eq. (16), we retained the different sets of K–L modes to form the reduced-order model. After few simulations, the first

60 K–L modes was seen to be sufficient to accurately track the system dynamics. Fig. 5 shows the lift coefficient time-

history computed with 60 K–L modes. Fig. 6 compares the result obtained using two different POD models having

different simulation frequency windows but with the same number of retained K–L modes. It is evident that the results

are significantly different for different choice of simulation frequencies. Note that in both the models the simulation

frequencies cover the actual model oscillation frequency.

We also investigated the effectives of the POD reduced-order model to predict the system response over a frequency

range other than k ¼ 1:0: Snapshots were generated in the frequency domain at reduced frequencies k ¼ 0:02–14 in

steps of Dk ¼ 0:02: Solving the eigenvalue problem for the correlation matrix formed with the snapshots, this gave a

total of 1400 POD modes. The first 20, 40, and 60 POD modes were considered to form reduced-order models. From
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Fig. 7 it is seen that the POD model with first 40 POD modes follows the system dynamics closely in the frequency range

k ¼ 0:1–3.0. The response of these POD reduced-order models to step input is shown in Fig. 8. Here, the POD model

with 60 K–L modes seems to follow the system dynamics closely as compared to that formed with 40 K–L modes. In

general though, POD models formed with snapshots of the time domain response of the system subjected to an impulse

type input would be most suitable to form reduced-order POD models (Parte, 2002).

An issue of considerable significance while comparing reduced-order modeling approaches is the number of floating

point operations needed to predict system response. Towards that, we have compared the number of floating point

operations needed to simulate the dynamics of the full-order model, SEREP reduced-order model, and POD reduced-

order model, in the time domain, for a fixed time interval with fixed time-step, and at a specified reduced frequency. The

simulations were done using MATLAB. It was observed that the full order model took 1:29� 1010 flops, whereas,

SEREP and POD based reduced-order models takes 3:6� 108 and 3:45� 109 flops, respectively, to simulate through

the same time window for an oscillation frequency k ¼ 1:0: This shows that SEREP is more efficient by an order of

magnitude. It is important to note that these values for the floating point operations pertain to the time-domain

response calculations only. They do not include the floating point operations to form the reduced-order models. That is,

in all the cases mentioned above, the flops count for SEREP does not consider the calculations pertaining to

eigenanalysis and to form the transformation matrices. Elsewhere (Parte, 2002), it is shown that the number of floating
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point operations for these calculations are insignificant relative to the time-domain response calculations. For POD, the

flops to generate the frequency domain snapshots and to form the K–L modes too have not been considered. However,

in the case of POD reduced-order models, the number of floating point operations needed to generate these snap-shots

are indeed very high, either in the time-domain or in the frequency domain, since the full-order system has to be

simulated to generate these snapshots. The floating point operations needed in other parameter ranges have also been

computed and SEREP is always seen to be more efficient than POD. The more number of operations for POD relative

to SEREP could be attributed to the fact that SEREP reduces the number of degrees of freedom, whereas POD does

not. In POD reduction, after simulating the system in terms of K–L modes, one always has to transform back to the

original system coordinates.

6. Conclusions

In the present work we have applied System Equivalent Reduction Expansion Process (SEREP) to model order

reduction for linear unsteady aerodynamic problems. This technique seems to be more efficient than Proper Orthogonal

Decomposition (POD) in determining the response of the unsteady aerodynamic model of a flow past an oscillating

airfoil cascade. Although we have chosen a lumped vortex model for the unsteady aerodynamics, which is usually of

low order compared to finite element models, elsewhere (Parte, 2002) it is shown that SEREP is also efficient relative to

POD in the case of finite element model reduction of incompressible potential flow. However, one should keep in mind

that POD can be applied for model order reduction of nonlinear dynamic systems whereas SEREP is limited to linear

systems.
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